If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+80x+100=0
a = 7; b = 80; c = +100;
Δ = b2-4ac
Δ = 802-4·7·100
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-60}{2*7}=\frac{-140}{14} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+60}{2*7}=\frac{-20}{14} =-1+3/7 $
| 3x^2+4x-7=15 | | 9+2x-4/3=81 | | |4b-5|=19 | | -2k-3=4k-15 | | -12=3r+3r | | -(6x-1)=0 | | 11-1/2y=3+6y | | |3n-4|=-1 | | 2u^2-5u-18=0 | | -6x+1=14x5 | | 12=-3(2x+2)+7x | | |3n-4|=1 | | 90=12x+42 | | 3x/4-7/5=2x/10 | | 0.1x-0.6x-14=1 | | -3a+3+4a=10-21 | | x(4)=2x | | 6x-10=4x+22 | | 2+5.7t-4.9t^2=0 | | 2=2/m−7 | | 1.5t^2-24t=0 | | x+5=-81 | | 4f-16+2f=3f+11 | | x+2(x-7)=3x-7 | | 4r=21+2.50r | | (4x+9)+(4x+8)+(4x)=(4x)+4x)+(5x+6) | | F(x)=5/6x-15 | | 3z+15=48 | | 8x-2(3x-5)=24 | | 8(5x-3=6(-3x-4) | | -1/8c=-5/4 | | 2r-3/5=3 |